The Dirichlet Problem for the Monge-ampère Equation in Convex (but Not Strictly Convex) Domains

نویسندگان

  • DAVID HARTENSTINE
  • D. HARTENSTINE
چکیده

It is well-known that the Dirichlet problem for the MongeAmpère equation det Du = μ in a bounded strictly convex domain Ω in R has a weak solution (in the sense of Aleksandrov) for any finite Borel measure μ on Ω and for any continuous boundary data. We consider the Dirichlet problem when Ω is only assumed to be convex, and give a necessary and sufficient condition on the boundary data for solvability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Dirichlet Problem for Monge-ampère Equations in Non-convex Domains and Spacelike Hypersurfaces of Constant Gauss Curvature

In this paper we extend the well known results on the existence and regularity of solutions of the Dirichlet problem for Monge-Ampère equations in a strictly convex domain to an arbitrary smooth bounded domain in Rn as well as in a general Riemannian manifold. We prove for the nondegenerate case that a sufficient (and necessary) condition for the classical solvability is the existence of a subs...

متن کامل

The Monge–ampère Equation with Infinite Boundary Value

with the infinite boundary value condition u = +∞ on ∂Ω. (1.2) We will look for strictly convex solutions in C∞(Ω); it is necessary to assume the underlying domain Ω to be convex for such solutions to exist. This problem was first considered by Cheng and Yau ([5], [6]) for ψ(x, u) = eKuf(x) in bounded convex domains and for ψ(u) = e2u in unbounded domains. More recently, Matero [11] treated the...

متن کامل

Dirichlet Problems of Monge-ampère Equations

This note presents a detailed and self-contained discussion of the Dirichlet problem of real Monge-Ampère equations in strictly convex domains and complex Monge-Ampère equations in strongly pseudo-convex domains. Sections 1.1 and 1.2 follow [2] and [3] respectively, while Sections 2.1, 2.2 and 2.3 are based on [5], [4] and [1] respectively. This note is written for lectures in the Special Lectu...

متن کامل

Smooth Approximations of the Aleksandrov Solution of the Monge-ampère Equation

We prove the existence of piecewise polynomials strictly convex smooth functions which converge uniformly on compact subsets to the Aleksandrov solution of the Monge-Ampère equation. We extend the Aleksandrov theory to right hand side only locally integrable and on convex bounded domains not necessarily strictly convex. The result suggests that for the numerical resolution of the equation, it i...

متن کامل

Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator

where B = {x ∈ Rn : |x| < } is the unit ball in Rn and Du = ( ∂u ∂xi∂xj ) is the Hessian of u, λ is a nonnegative parameter and f : R→ R is a continuous function. The study of problem (.) in general domains of Rn may be found in [, ]. Kutev [] investigated the existence of strictly convex radial solutions of problem (.) when f (u) = up. Delanoë [] treated the existence of convex radi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006